TOP > 関連講座 > 小中学生から分かる科学の話 > NO.4 できると分かるの違い

関連講座 NO.4 できると分かるの違い

身の回りにある現象で、知ってるけど、うまく説明できない。考えると、よく分からない。
こんな「?」を、博い知識を有している学園長が歴史や文学なども交えながら、小学生から理解できるように面白く、そして分かりやすくお話してくれています。
それを、生徒たち(元気学園大学生チームがメインとなって)が、文章にして、絵や図の解説をつけました。

NO.4 できると分かるの違い

例えば数学において、解ると出来るはどう違うのでしょうか。
3分の1、2分の1、4分の3という分数は、誰もが完全に解る。
スイカで例えれば、3分の1は3つに分けた1つであるとすぐに解る。
2分の1についても、2つに分けた1つ分だと解る。
同じように、4分の3も4つに分けた3つ分だとすぐに解る。
又、4分の3に1がついて、1と4分の3となっても、4つに分けた4つと、 4つに分けた3つ分なのでこれもすぐに解る。
1と4分の3は4分の7であり、4分の7と書いてもすぐに解る。
3分の1×3分の1=9分の1は、3分の1あったものを更に3分の1にする。
3分の2×3分の1=9分の2は、3分の2にしたものを、更に3分の1にする。


ここまでは誰にでも解るが、ここからは出来るが解らなくなる。
その理由は、分数の割り算を説明する事は難しい為。
例えば、3分の2÷3分の1の場合、割る数をひっくり返し、
3分の2×1分の3にして計算すると習う。
これを計算すると、2という答えが出る。
計算は出来るが、何故こんな風に計算するのか解らない。
割る数をひっくり返す事はテクニックだが、理解しているわけではない。

 


普通のかけ算・割り算は解るし、出来る。
しかし、分数の割り算を人に解るように説明する事は難しい。
数学は、簡単なうちは解るが、中学・高校と学年が進むにつれて解らなくなっていく。高学年になって数学が出来なくなる理由は、
「どんな意味をもっているのか」という事が解らなくなっていくから。
解るという事は大変。

数学の授業で、三角形の合同、相似、ピタゴラスの定理など習う。
大学、大学院で学生にこれらを教えるが、日常でこれらの事は使った事がない。


ツル・カメ算は、連立方程式を使えばすぐに解ける。
例えば、「ツルとカメ合わせて10匹いる。足の数は30本。
ツルは何匹、カメは何匹いるか。」
という問題がある。昔はこのような問題を、だいたい小学校6年生で習った。
これは連立方程式を使えば簡単に解ける。
このようにあっという間に計算できるが、実際これがどういう風な意味をもっているのか解らない。
しかし、ツル・カメ算で、4本足のカメ何匹かと2本足のツル何匹かを足すと、足は全部で30本になる…と考えていくと、意味も分かる。


このような計算は、日常生活の中では使わない。
皆さんがどんな職業に就くか、あるいは就いていても、ほとんど使う事はないでしょう。
では、なぜ学校の先生は、こんな生活の役に立たない事を覚えさせようとするのでしょうか?
実は、これは論理的にものを考えるトレーニング。


例えば、皆さんは、歩くのにどのくらいの横幅が居るのでしょうか。
誰でも30 cmあればまっすぐ歩けるね。
では、深い谷川に、30 cm幅の手すりのない橋が架かっていると考えてみましょう。
皆さんは、この橋を渡れますか。
怖くて渡れませんね。 ところが、この橋の両側を、あと5m広くしてみたらどうでしょう。
これなら、手すりが無くても怖くないし、多少転んでも大丈夫。
30 cmだけでは、少しふらふらしたらすぐ落ちてしまうけれど、これだけあれば安心して渡れる。


この5mの部分というのは、前に述べた「日常に使わないこと」に当たる。
日常で、色々な事を想定できるようになる為に、普段は使わないような事を、
沢山学ぶという事。
小学生の頃、私は喧嘩はあまり強くないし、周りからもいじめられ、学校があまり好きではなかった。
しかし、中学校に入学して最初の数学で、ある問題を出されたのがきっかけで、
数学が大好きになり、学校も好きになった。


例えば、皆さんはこんな問題を見た事があるでしょうか。
ここに、3個のボールがあるとする。
このボールは、見た目は全く同じだが、一つだけ重さが違う。
その一つを、天秤を2回だけ使って調べなさい、というもの。
これは、簡単だね。
まず、2つ選んで秤に乗せ、つり合ったら残り一つがおかしい。
つり合わなかったら、残り一つのボールとどちらかを比べてみればいい。


では、5つで、3回以内だったらどうだろうか。

これも、そんなに難しくはないね。

やり方はいろいろあるが、ここでは、その中の一つを紹介しておこう。

(紹介)

数学の時間に出された問題というのは、このボールが8個で、3回以内の場合だった。

皆さんはできるかな。

その時、クラスで一人だけその問題が解けた事で、
ちょっと得意になって、数学が大好きになった。
最大12個までが、この3回の試行でできるとわかったんだ。
それで、自信を付けて、高校でも成績が良く、大学も東京大学に入ったんだ。
その事が、現在に繋がっているんだよ。

最後のボール8個の問題は宿題にするので、皆さんどうぞ挑戦してみてください。

皆さんも、何か一つでも自分の興味のあることを発見し、それを明日に繋げることができたらいいね。

前
NO.3 温度って何
次
NO.5 コツをつかむコツ
このサイトについて

元気学園の名前の由来:虚弱である、朝起きできない、低血圧、頭痛などの体調不良を訴える健康上の問題を抱えた子どもたちを元気で活発にすることから名付けられました。

サイトマップ

携帯サイトのご案内

フリースクール元気学園 携帯サイト
元気学園携帯サイト

ブログ不登校365日

元気学園ソーイング部

家から出ない、学校に行けないのは心のせいだけじゃない!

不登校の「本当」を知りたい人、解決のヒントが欲しい方どうぞ
著者:元気学園校長小林高子

元気先生の不登校相談室

元気先生の不登校引きこもりQ&A

今悩みを抱えているお母さんたちに、相談室を開催しています

ブログ 新着記事

[不登校365日24時間]
ほぼ毎日更新しています!

不登校や引きこもりいろんな悩みを抱えた子供たちとの生活。 フリースクール元気学園独自の教育について。 生徒の保護者の方々が、我が子の毎日の様子を知り、楽しんで下さっています。

更新情報
  • 母の日だから素直にありがとうを伝えたい
    母の日に送った葉書き。恥ずかしいけど、いい気分でもあって、こそばゆい。
    そして、母からのお返事のコメントを読むと、ニコニコしながら応援してくれている姿を感じられて、ほっと一安心。

    不登校でこじれた親子関係を再構築していっています。
    (2017年7月19日)
  • 家族と行く修学旅行、万里の長城
    家族と共に海外への修学旅行。
    万里の長城へ来てしまった!!
    山ほど世界遺産を見て、おいしい食べ物に舌鼓。
    可愛いパンダにも会ってきました! :-)
    (2017年7月6日)
  • 信州・斑尾高原の旅
    信州・斑尾高原へ一泊二日旅行に行ってきました。
    いつも、一緒に寮生活しているみんなですが、リゾートホテルに泊まるのは、新鮮!楽しみ!ワクワク!
    水着持って、お小遣いもって、レッツゴー。
    もちろん、プールも温泉もゴルフも楽しみですが、それだけでは終わらないのが、元気学園の旅。必ずそこには、「学び」があります。ちょうど、真田幸村のことを大河ドラマでしているので、それに関連する学びの旅となりました。
    (2016年6月23日)
  • 梅狩りボランティア 2016
    「今年もよく来てくれました。ありがとうございます。どうぞ、よろしくお願いします。」から始まったボランティア活動。
    若者が、過疎地域をサポートするという、元気学園の「お助け隊チーム」が、活躍します。
    (2016年6月9日)

元気学園のソーイング倶楽部ブログ

元気学園動画はこちら

掲載の記事・写真・図表など、すべての無断転載を禁止します。 copyright © 1995フリースクール 元気学園 All Right Reserved.